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PHONON HEAT CAPACITY

The contribution of the phonons to the heat capacity of a crystal is called
the lattice heat capacity and is denoted by Cy,. The total energy of the
phonons at a temperature 7(=kzT) in a crystal may be written as the sum of
the energies over all phonon modes, here indexed by the wavevector K and
polarization index p:

Uy = % ; Uk.p = g g(n"‘?}ﬁml{’ ’ (1)

where (ng,) is the thermal equilibrium occupancy of phonons of wavevector
K and polarization p. The form of (ng,) is given by the Planck distribution
function:

1
exp(hw/r) = 1’

where the () denotes the average in thWilihﬂum. A graph of (n) is
given in Fig. 1.

(n)= (2)

a.k.a.: Bose-Einstein distribution
(Fermi-Dirac one in next Ch.)
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Figure 1 Flot of Flanck distribution fumction. At high temperatures the occupancy of a state is
appmximabely linear in the temperature. The function {n} + i, which is not plottad, apProaches
the dashed line as asymptote at high temperatures.

Normal Mode Enumeration

The energy of a collection of oscillators of frequencies wg, in thermal
equilibrium is found from (1) and (2): -

(8)

It is usually convenient to replace the summation over K by an integral. Sup-
pose that the crystal has D,(w)dw modes of a given polarization p in the fre-
quency range w to @ + dw. Then the energy is

= _ few
U ?jdm Dp(m)mp(wﬂ —1- (9)

The lattice heat capacity is found by differentiation with respect to tempera-
ture. Let x = Aw/t = hw/kyT: then aU/AT gives

Cexpx
cm-k,gj’dmn,(m}w—_”z. (10)

The central problem is to find D(w), the number of modes per unit fre-
quency range. This function is called the density of modes or, more often, den-

sity of states.
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Density of States in One Dimension

Consider the boundary value problem for vibrations of a one-dimensional
line (Fig. 2) of length L carrying N + 1 particles at separation a. We suppose
that the particles s =0 and s = N at the ends of the line are held fixed. Each
normal vibrational mode of polarization p has the form of a standing wave,
where u, is the displacement of the particle s:

u, = u(0) exp(—iwg,t) sin sKa | {11)

where wy,, is related to K by the appropriate dispersion relation.

-L

4]
Fixcd.\ Uy |""a"'| /Fixed
s=0 1 2 e s=10
Figure 2 Elastic line of ¥ + 1 atoms, with N = 10, for boundary conditions that the end atoms
s = 0ands = 10 are fixed. The particle displacements in the normal modes for either longitudinal
or transverse displacements are ol the form u, = sin sKg. This form is antomatically zero at the
alom at the end s = 0, and we choose K to make the displacement zero at the end s = 10 .

As in Fig. 3, the wavevector K is restricted by the fixed-end boundary con-
ditions to the values
K—T 2m 3w (N=1N)m

I° L L I - (12)

The solution for K = 7r/L has
11, % sin (sa/L) (13)

and vanishes for s = 0 and s = N as required.

The solution for K = Na/L = m/a = K, has u, < sin sm; this permits no
motion of any atom, hecause sin sm vanishes at each atom. Thus there are
N — 1 allowed independent values of K in (12). This number is equal to the
number of particles allowed to move. Each allowed value of K is associated
with a standing wave. For the one-dimensional line there is one mode for each
interval AK = /L, so that the number of modes per unit range of K is L/m for

K = m/a, and O for K > m/a.

————— o ¢ o o
0 . 10w
]

102

1o,
B

=8
g

K—

Figure 3 The boundary condition sin sKa = 0 for s = 10 can be satisfied by choosing K = 7/10a,
27/10a, . . ., 97/10a, where 10 is the length L of the line. The present figurc is in K space. The
dots are not atoms but are the allowed valucs of K. Of the N + 1 particles on the line, only N — 1
are allowed to move, and their most general motion can be expressed in terms of the N — 1 al-
lowed values of K. This quantization of K has nothing to do with quantum mechanics but follows
classically from the boundary conditions that the end atoms be fixed.
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Another device for enumerating modes is equally valid. We consider the
medium as unbounded, but require that the solutions be periodic over a large
distance L, so that u(se) = u(sa + L). The method of periodic boundary
conditions (Figs. 4 and 5) does not change the physics of the problem in any
essential respect for a large system. In the running wave solution
u, = u(0) exp[i(sKa — wt)] the allowed values of K are

2w 4 6w Nw
= +— -+ + =
K 0 ] - L ] - L L] - L IS | L . (]-4)
_Nm 6w 4w 2r 0 2w 4w 67 Nm
L L L L L L L

Figure 5 Allowed values of wavevector K for periodic boundary conditions applied to a linear lat-
tice of periodicity N = 8 atoms on a line of length L. The K = 0 solution is the uniform mode. The
special points *Nar/L represent only a single solution because exp(ims) is identical to exp(—iws);
thus there are eight allowed modes, with displacements of the sth atom proportional to 1,
exp(tims/4), exp(*ins/2), exp(*idws/4), explims).

Figure 4 Consider N particles constrained to slide on
a circular ring. The particles can oscillate if connected
by elastic springs. In a normal mode the displacement
u, of atom s will be of the form sin sKa or cos sKa:
these are independent modes. By the geometrical pe-
riodicity of the ring the boundary condition is that
tiyss =, for all 5, so that NKs must be an integral
multiple of 277. For N = § the allowed independent
values of K are 0, 2n/8a, 4u/8a, 67/84, and 8u/8a. The
value K = 0 is meaningless for the sine form, because
sin s0a = 0. The value 87/8z has a meaning only for
the cosine form, because sin (s8ma/8a) = sin s = 0.
The three other values of K are allowed for both the
sine and cosine modes, giving 4 total of eight allowed
modes for the ecight particles. Thus the periodic
boundary condition leads to one allowed mode per
particle, exactly as for the fixed-end boundary condi-
tion of Fig. 3. If we had taken the modes in the com-
plex form explisKa), the periedic boundary condition
would lead to the eight modes with K = 0, =2#/Na,
*4w/Na, £6m/Na, and 87/Na. as in Eq. (14).
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This method of enumeration gives the same number of modes (one per
mobile atom) as given by (12), but we have now both plus and minus values of
K, with the interval AK = 2n/L between successive values of K. For periodic
boundary conditions, the number of modes per unit range of K is L/2m for
—m/a < K < m/a, and 0 otherwise. The situation in a two-dimensional lattice is
portrayed in Fig. 6.

Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of Jat-
tice constant e, with periodic boundary conditions applied over a square of side L= 10a. The uni-
form mode is marked with a cross. There is one allowed value of K per area (27/10a)* = (2#/L)?, so

| that within the circle of area 7K® the smoothed number of allowed points is wK*(L/27)*

We need to know D(w), the number of modes per unit frequency range for
a given polarization. The number of modes D(w) dw in do at w is given in one
dimension by

L dK L, dvw
e R . 15
Dy{w) dw ""r]mdw T dwldK (15)
We can obtain the group velocity dw/dK from the dispersion relation @ versus
K. There is a singularity in Dy(w)whenever the dispersion relation o(K) is hori-
zontal; that is, whenever the group velocity is zero.

Homework: Derive an expression for 2D
(let A be the area of the sample)
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Density of States in Three Dimensions

We apply periodic boundary conditions over N° primitive cells within a
cube of side I, so that K is determined by the condition

expli(K,x + Ky + K.z)] = explil Kx + L) + K,{y + L) + K(z + L)} , (16)
whence
0. +2m 4w  Nm
KoKy Ko=0; x50 =50 o ST (17)

Therefore, there is one allowed value of K per volume (277/L)* in K space, or

LY_ v
(ﬂ) R (18)
allowed values of K per unit volume of K space, for each polarization and for
each branch. The volume of the specimen is V = L.

The total number of modes with wavevector less than K is found from (18)
to be (L/27)° times the volume of a sphere of radius K. Thus

N = (L/27)*(4wK"/3) (19)
for each polarization type. The density of states for each polarization is
Sometime, “D(K)" — — These apply to others such ag
is used instead. Diw) = dN/de = (VKR {dK/dw) . electrons, photons, etc

Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum, The dis-
persion relation is written as

w=uvK , (21)

with v the constant velocity of sound.
The density of states (20) becomes

D(w) = Vw’2me® . (22)

If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff freqnenny wp is determined by (19) as

wp = 6T N/V |, (23)
To this frequency there corresponds a cutoff wavevector in K space:
Kp = wp/v = (6a"N/WY* . (24)

On the Debye model we do not allow modes of wavevector larger than K;,. The
number of modes with K = Kj, exhausts the number of degrees of freedom of a

monatomic lattice.
Or an acoustical branch
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The thermal energy (9) is given by

_ _[™ Vo' fiw
U fdm D(m){n{m))fun—L dw (27:-’93)(3"'" - ]) , (25)

for each polarization type. For brevity we assume that the phonon velocity is
independent of the polarization, so that we multiply by the factor 3 to obtain

3Vh J’ “ w’ BVKRT' [ 43
U= dw = dx , 26
are*le -1 2a%e €] (26}
where r = hw/T = hw/kgT and
Ip = ﬁwp!’kg?' = /T . {27}

This defines the Debye temperature 6 in terms of w;, defined by (23).

We may express # as
V3
p=tv. (m) | (28)

so that the total phonon energy is

3 [1p 3
U?gm;(%') L e (29)

where N is the number of atoms in the specimen and x;, = 6/T.
The heat capacity is found most easily by differentiating the middle ex-
pression of (26) with respect to temperature. Then

R\ f o gy gl (T)3 J’ B e
Co=—B _ | -2 ¢ = 1 dx . (30
VU amHeT? Jo T (M — 1) ONks{ 5 o (@=1)2 (30)

The Debye heat capacity is plotted in Fig. 7. At T> @ the heat capacity ap-
proaches the classical value of 3Nky. Measured values for silicon and germa-
nium are plotted in Fig, 8.
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Figure 8 Heat capacity of silicon and germa-
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Temperature, K multiply by 4156,
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Debye T°Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

3 _ P
_1 f dx x Eexp( ) 6}1184 5 (31)
where the sum over s * is found in standard tables. Thus U= 3#'Nk,;T"/56° for
T <6, and

3
Cy = 125“ NkB( ) =934 Nka(%) , (32)

which is the Debye T® approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T8 approximation is quite good: that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.
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Figure 9 Low temperature heat capacity of solid argon, plotted against T°, In this temperature
region the experimental results are in excellent agreement with the Debye 77 law with 8 = 92.0 K.

{Courtesy of L. Finegold and N. E, Phillips.}

We understand the T° result };y a simple a.rgumcnf (Fig. 10). C_)nly those
lattice modes having #iew < kT will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-

cal, each with an energy close to k5T, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of (wy/wp)® or (K;/Kp)3, where Ky is a “thermal” wavevec-
tor defined such that hoK; = kT and Kj, is the Debye cutoff wavevector. Thus
the fraction occupied is (T/8)° of the total volume in K space. There are of the
order of 3N(T/8)%excited modes, each having energy kyT. The energy is

~3Nk,T(T/8), and the heat capacity is ~ 12Nk (T/8)°.

K,

Bosp - AoKp = kg8
huKy = kyT

Figure 10 To obtain a qualitative explanation of the Debye T? law, we suppose that all phonon
modes of wavevector less than K; have the classieal thermal energy kT and that modes between
K; and the Debye cutoff Ky are not excited at all. Of the 3N possible modes, the fraction excited is
{K/KpY = (T/0)*, because this is the ratio of the volume of the inner sphere to the outer sphere.
The energy is U = k,T - 3N(T/6}". and the heat capacity is Cy = JU/ST = 12Nk, (T/6)".

Peter Debye
1884-1966
Nobel Prize 1936
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Einstein Model of the Density of States

Consider N oscillators of the same frequency w, and in one dimension.
The Einstein density of states is D{w) = N&(w — w,), where the delta function

is centered at wy. The thermal energy of the system is

Nhw
gvr—1"

with @ now written in place of ay, for convenience,

U= N{no =

The heat capacity of the oscillators is

_ ﬂ_q _ ﬁ;” E_Ehufr
C“'_(BT)V_MB( T)(e"‘“’" TR

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
tion of N identical oscillators to the heat capacity of a solid. In three dimensions
N is replaced by 3N, there being three modes per oscillator. The high tempera-

ture limit of Cy becomes 3Nk, which is known as the Dulong and Petit value.&in 18101
At low temperatures (34) decreases as exp(—#w/r), whereas the experi-

mental form of the phonon contribution is known to be T%as accounted for by

the Debye model treated above. The Einstein model, however, is often used to

approximate the optical phonon part of the phonon spectrum.
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Figure 11 Comparison of !‘.xpcr“lmnntal values of the heat capacity of diamond with values calen
lated on the earliest quantum (Einstein) model, using the characteristic temperature

By = fiw'ky = 1320 K. To convert to [/mol-deg, multiply by 4.186.
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General Result for D(w)

We want to find a general expression for D(w), the number of states per unit
frequency range, given the phonon dispersion relation w(K). The number of al-
lowed values of K for which the phonon frequency is between @ and @ + dw is

(LY
D(w}dw—(ﬁ) fma“x, (35)

where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is @ and the other on which the frequency is @ + dw.

K

Figure 12 Element of area dS_ on a constant
frequency surface in K space. The volume

between two surfaces of constant frequency at
w and w + dw is equal to|[ dS, dw/|Vyw|

/ Constant o surface

The real problem is to evaluate the volume of this shell. We let S, denote
an element of area (Fig. 12) on the surface in K space of the selected constant
frequency w. The element of volume between the constant frequency surfaces
o and @ + dw is a right cylinder of base dS,, and altitude dK, so that

Lh‘“ d’K = j dS,dK, , (36)

Here dK, is the perpendicular distance (Fig. 13) between the surface  con-
stant and the surface @ + do constant. The value of dK; will vary from one
point to another on the surface.

The gradient of @, which is Vyw, is also normal to the surface w constant,
and the quantity

|Viw| dK, = dw ,

is the difference in frequency between the two surfaces connected by dK,.
Thus the element of the volume is

—gs, 90 __ g do
ds,dK, =ds, Vol ds, v
where v, = [Vgw| is the magnitude of the group velocity of a phonon. For (35)

we have
3
D(w)dew = (L) By o
g

2

20/03/2012
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We divide both sides by dw and write V= L? for the volume of the crystal: the
result for the density of states is

% J‘dsm

(27 Y

D(w) = (37)

The integral is taken over the area of the surface @ constant, in K space. The
result refers to a single branch of the dispersion relation. We can use this re-
sult also in electron band theory.

There is a special interest in the contribution to D{w) from points at which
the group velocity is zero. Such critical points produce singularities (known as
Van Hove singularities) in the distribution function (Fig. 14).

/ Diw)

Diw)| N
Akink in DOS ] :ﬂ‘l‘
Lon van Hove,
‘ Belgian, 1924-1990,
w
(b)

Former Director
(a)

% General of CERN
Figure 14 Density of states as a function of frequency for (a) the Debye solid and (b) an actual
crystal structure. The spectrum for the crystal starts as o” for small @, but discontinuities develop
at singular points.

ANHARMONIC CRYSTAL INTERACTIONS

The theory of lattice vibrations disenssed thus far has been limited in the
potential energy to terms quadratic in the interatomic displacements. This is
the harmonic theory; among its consequences are:

» Two lattice waves do not interact; a single wave does not decay or change
form with time.

¢ There is no thermal expansion.

*Adisbutic and isothermal clastic constants are equal.

¢ The elastic constants are independent of pressure and temperature.,
¢ The heat capacity becomes constant at high temperatures T > 6.

In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

12



Thermal Expansion

We may understand thermal expansion by considering for a classical oscil-
lator the effect of anharmonic terms in the potential energy on the mean scpa-
ration of a pair of atoms at a temperature T. We take the potential energy of the
atoms at a displacement x from their equilibrium separation at absolute zero as

Ulx) = ex* — g — i, (38)

with ¢, g, and f all positive. The term in x* represents the asymmetry of the
mutual repulsion of the atoms and the term in x* represents the softening of the
vibration at large amplitudes. The minimum at x = 0 is not an absolute mini-
mum, hut for small oscillations the form is an adequate representation of an in-
teratomic potential.

We calculate the average displacement by using the Boltzmann distribu-
tion function, which weights the possible values of x according to their
thermodynamic probability:

| dexexpl-pue)
W=t

1

[* acexpl-pren

with B = Uk,T.

. For displacements such that the anharmonic terms in the
energy are small in comparison with kgT, we may expand the integrands as

[ dx x exp(—BU) = [ dx [exp(—Bex?))(x + Bgx* + BA®) = (3024)(gi>*)B™™ ;
[ dx exp(—BU) = [ dx exp(—Bex®) = (m)Be)? | (39)

whence the thermal expansion is

W=kt (40)
in the classical region. Note that in (39) we have left &2® in the exponential, but
we have expanded exp(Bgx’ + Bfr") = | + Box® + Bfe* +- -

Measurements of the lattice constant of solid argon are shown in Fig. 15.
The slope of the curve is proportional to the thermal expansion coefficient.
The expansion coefficient vanishes as T— 0, as we expect from Problem 5. In
lowest order the thermal expansion does not involve the symmetri¢/term fx* in

U(x), but only the antisymmetric term gx’.
Homework: due March 22

20/03/2012
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THERMAL CONDUCTIVITY

The thermal conductivity cocfficient K of a solid is defined with respect to
the steady-state flow of heat down a long rod with a temperature gradient
dT/dx: '

Ju= _KE > (41)

where j; is the flux of thermal energy, or the energy transmitted across unit
area per unit time.

This form implies that the process of thermal energy transfer is a random
process. The energy does not simply enter one end of the specimen and pro-
ceed directly (ballistically) in a straight path to the other end, but diffuses
[hrough the specimen, suffering frequent collisions. If the energy were propa-
gated directly through the specimen without deflection, then the expression
for the thermal flux would not depend on the temperature gradient, but only
on the difference in temperature AT between the ends of the specimen, re-
gardless of the length of the specimen. The random nature of the conductivity
process brings the temperature gradient and, as we shall see, a mean free path

into the expression for the thermal flux. What does temperature mean?

20/03/2012
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From the kinetic theory of gases we find below the following expression
for the thermal conductivity:

K=3iCuf , (42)

where C is the heat capacity per unit volume, v is the average particle velocity,
and € is the mean free path of a particle between collisions. This result was ap-
plied first by Debye to describe thermal conductivity in dielectric solids, with C
as the heat capacity of the phonons, v the phonon velocity, and ¢ the phonon
mean free path. Several representative values of the mean free path are given
in Table 2,

See also thermal conductivity due to electrons.

Table 2 Phonon mean free paths

[Calculated from (44), taking v = 5 X 10° em/sec as a representative sound velocity.
The €'s obtained in this way refer to umklapp processes. ]

(':'ryslal T.*C C,inJem K- K, inWem 'K™! £, inA
N T e T AR T e R e TR N DT T T
Quarts* 0 2.00 0.13 40
-190 0.55 0.50 540
NaCl 0 1.88 0.07 23
190 1.00 0.27 100

TS
*Parallel to optic axis.

We give the elementary kinetic theory which leads to (42). The flux of par-
ticles in the x direction is su{|v,|). where n is the concentration of molecules;
in equilibriuin there is a flux of equal magnitude in the opposite direction. The
{-**) denote average valuce.

If ¢ is the heat capacity of a particle, then in moving from a region at local
temperature T + AT to a region at local temperature T' a particle will give up
energy ¢ AT. Now AT between the ends of a free path of the particle is given by

dT , _d:

AT=£E,=£_-0,1' ,

where 1is the average time between collisions.
The net flux of energy (from both senses of the particle flux) is therefore

ju= —u(vf}cr% = —én{vﬂ)crfix—T . (43)
If, as for phonons, v is constant, we may write (43) as

dT
P

Ju= —%Cuf (44)

with € = or and C = ne. Thus|K = 1Coé.

20/03/2012
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Thermal Resistivity of Phonon Gas

The phonon mean free path € is determined principally by two processes,
geometrical scattering and scattering by other phonons. If the forces between
atoms were purely harmonic, there would be no mechanism for collisions be-
tween different phonons, and the mean free path would be limited solely by
collisions of a phonon with the erystal boundary, and by lattice imperfections.
There are situations where these effects are dominant.

With anharmonic lattice interactions, there is a coupling between differ-
ent phonons which limits the value of the mean free path. The exact states of
the anharmonic system are no longer like pure phonons.

The theory of the effect of anharmonic coupling on thermal resistivity pre-
dicts that € is proportional to /T at high temperatures, in agreement with
many experiments. We can understand this dependence in terms of the num-
ber of phonons with which a given phonon can interact: at high temperature
the total number of excited phonons is proportional to T. The collision fre-
quency of a given phonon should be proportional to the number of phonons
with which it can collide, whence € o« 1/T.

To define a thermal conductivity there must exist mechanisms in the crys-
tal whereby the distribution of phonons may be brought locally into thermal
equilibrium. Without such mechanisms we may not speak of the phonons at
one end of the crystal as being in thermal equilibrium at a temperature T; and
those at the other end in equilibrium at T.

It is not sufficient to have only a way of limiting the mean free path, but
there must also be a way of establishing a local thermal equilibrium distribu-
tion of phonons. Phonon collisions with a static imperfection or a crystal
boundary will not by themselves establish thermal equilibrium, because such
collisions do not change the energy of individual phonons: the frequency w; of
the scattered phonon is equal to the frequency w; of the incident phonon.

20/03/2012
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It is rather remarkable also that a three-phonon eollision process

Kl + K2 = K3 (45)

will not establish equilibrium, but for a subtle reason: the total momentum of
the phonon gas is not changed by such a collision. An equilibrium distribution
of phonons at a temperature T can move down the crystal with a drift velocity
which is not disturbed by three-phonon collisions of the form (45). For such
collisions the phonon momentum

]egnﬁx (46)

is conserved, because on collision the change in J is K3 — K; — K; = 0. Here ng
is the number of phonons having wavevector K.

For a distribution with J # 0, collisions such as (45) are incapable of es-
tablishing complete thermal equilibrium because they leave J unchanged. Tf
we start a distribution of hot phonons down a rod with J # 0, the distribution
will propagate down the rod with J unchanged. Therefore there is no thermal
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be-
tween molecules of a gas in a straight tube with frictionless walls.

Umklapp Processes

The important three-phonon processes that cause thermal resistivity are
not of the form K, + K, = K, in which K is conserved, but are of the form

K+K=K+G, (47)

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by
Peierls, are called umklap processes. We recall that G may occur in all mo-
mentum conservation laws in crystals. In all allowed processes of the form of
{(46) and (47), energy is conserved. ~ German word “turn over” or “flip over”

We have seen examples of wave interaction processes in crystals for which
the total wavevector change need not be zero, but may be a reciprocal lattice
vector. Such processes are always possible in periodic lattices. The argument is
particularly strong for phonons: the only meaningful phonon K's lie in the first
Brillouin zone, so that any longer K produced in a collision must be brought
back into the first zone by addition of a G. A collision of two phonons both
with a negative valne of K, can by an umklapp process (G # 0), create a phonon
with positive K,. Umklapp processes are also called U processes.
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Figure 17 (a} Normal K, + K;=K; and {b) umklapp K, + K; =K, + G phonon collision
processes in a two-dimensional square lattice. The square in each figure represents the first
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons
absorbed in the collision process; those with arrowheads away from the center of the zone repre-
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of
the x-component of the phopon flux has been reversed. The reciprocal lattice vector G as shown is
of length 27/, where a is the lattice constant of the erystal lattice, and is parallel to the K, axds

For all processes, N or U, energy must be conserved, so that @, + w, = .,

Collisions in which G = 0 are called normal processes or N processes. At
high temperatures T > 6 all phonon modes are excited because kgT > A .
A substantial proportion of all phonon collisions will then be U processes, with
the attendant high momentum change in the collision. In this regime we can
estimate the thermal resistivity without particular distinction between N and U
processes; by the earlier argument about nonlinear effects we expect to find a
lattice thermal resistivity o T at high temperatures.

The energy of phonans K,, K; suitable for umklapp to occur is of the order
of k8, because each of the phonons 1 and 2 must have wavevectors of the
order of 3G in order for the collision (47) to be possible. If both phonons have
low K, and therefore low energy, there is no way to get from their collision a
phonon of wavevector outside the first zone. The umklapp process must con-
serve energy, just as for the normal process. At low temperatures the number
of suitable phonons of the high energy kg8 required may be expected to vary
roughly as exp(—6/2T), according to the Boltzmann factor. The exponential
form is in good agreement with experiment. In summary, the phonon mean
free path which enters (42) is the mean free path for umklapp collisions be-
tween phonons and not for all collisions between phonons.
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Imperfections

Geometrical effects may also be important in limiting the mean free path.
We must consider scattering by erystal boundaries, the distribution of isotopic
masses in natural chemical elements, chemical impurities, lattice imperfec-
tions, and amnrphnus structures.

When at low temperatures the mean free path £ becomes comparable with
the width of the test specimen, the value of € is limited by the width, and the
thermal conductivity becomes a function of the dimensions of the specimen. This
effect was discovered by de Haas and Biermasz. The abrupt decrease in thermal
conductivity of pure erystals at low temperatures is causcd by the size effect.

At low temperatures the umklapp process becomes ineffective in limiting
the thermal conductivity, and the size effect becomes dominant, us shown in
Fig. 18. One would expect then that the phonon mean free path would be con-
stant and of the order of the diameter D of the specimen, so that

K=CoD . (48)

The only temperature-dependent term on the right is C, the heat capacity,
which varies as T* at low temperatures. We expect the thermal conductivity to
vary as T° at low temperatures. The size effect enters whenever the phonon
mean free path becomes comparable with the diameter of the specimen.
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Dielectric crystals may have thermal conductivities as high as metals. Syn-
thetic sapphire (Al0,) has one of the highest values of the conductivity: nearly
200 W em ™' K ! at 30 K. The maximum of the thermal conductivity in sapphire
is greater than the maximum of 100 W em™ K™ in copper. Metallic gallium,
however, has a conductivity of 845 W em™ K™ at 1.8 K. The electronic contri-
bution to the thermal conductivity of metals is treated in Chapter 6.

In an otherwise perfect erystal, the distribution of isotopes of the chemical
elements often provides an important mechanism for phonon scattering. The
random distribution of isotopic mass disturbs the periodicity of the density as
seen by an elastic wave. In some substances scattering of phonons by isotopes
is comparable in importance to scattering by other phonons. Results for ger-
manium are shown in Fig. 19. Enhanced thermal conductivity has heen ob-
served also in isotapically pure silicon and diamond; the latter has device
importance as a heat sink for laser sources.
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Figure 19 Isotope effect on thermal
conduetion in germanium, amounting to
. 4 factor of three at the conductivity
;f ™ maximum, The enriched specimen is 96
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Summary:

» Density of states — general expression

» Heat capacity — Debye and Einstein models,
Debye temperature, T"3 dependence, Planck
function derivative dependence

» Anharmonic effects — phonon-phonon
interaction/scattering, thermal expansion

» Thermal conductivity/resistivity — importance of

umklapp process
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